博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Codeforces 906 D Power Tower
阅读量:5333 次
发布时间:2019-06-15

本文共 2788 字,大约阅读时间需要 9 分钟。

Discription

Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is usually made of power-charged rocks. It is built with the help of rare magic by levitating the current top of tower and adding rocks at its bottom. If top, which is built from k - 1 rocks, possesses power p and we want to add the rock charged with power wk then value of power of a new tower will be {

wk}p.

Rocks are added from the last to the first. That is for sequence w1, ..., wm value of power will be

After tower is built, its power may be extremely large. But still priests want to get some information about it, namely they want to know a number called cumulative power which is the true value of power taken modulo m. Priests have n rocks numbered from 1 to n. They ask you to calculate which value of cumulative power will the tower possess if they will build it from rocks numbered l, l + 1, ..., r.

Input

First line of input contains two integers n (1 ≤ n ≤ 105) and m (1 ≤ m ≤ 109).

Second line of input contains n integers wk (1 ≤ wk ≤ 109) which is the power of rocks that priests have.

Third line of input contains single integer q (1 ≤ q ≤ 105) which is amount of queries from priests to you.

kth of next q lines contains two integers lk and rk (1 ≤ lk ≤ rk ≤ n).

Output

Output q integers. k-th of them must be the amount of cumulative power the tower will have if is built from rocks lk, lk + 1, ..., rk.

Example

Input
6 1000000000 1 2 2 3 3 3 8 1 1 1 6 2 2 2 3 2 4 4 4 4 5 4 6
Output
1 1 2 4 256 3 27 597484987

Note

327 = 7625597484987

 

 

首先你得需要知道一个定理:

当x>φ(p)时,a^x  mod p=a^(x mod φ(p)  +φ(p))  mod p。

因为φ(x)迭代不超过log(x)次就成1了(考虑2这个质因子),所以我们直接暴力迭代就行了。

由于我们并不知道下一层的值(也就是这一层的次数)是否大于φ(p),所以%p改成%2p就行了。

#include
#include
#include
#include
#include
#include
#include
#define ll long long#define maxn 100005using namespace std;ll a[maxn],n,mod[105],l,r,q,tot=0;inline ll MO(ll x,ll y){ return x>y?x%y+y:x;}inline ll ksm(ll x,ll y,const ll ha){ ll an=1; for(;y;y>>=1,x=MO(x*x,ha)) if(y&1) an=MO(an*x,ha); return an;}inline ll phi(ll x){ int tp=sqrt(x+0.5),y=1; for(int i=2;i<=tp;i++) if(!(x%i)){ x/=i,y*=i-1; while(!(x%i)) x/=i,y*=i; if(x==1) break; } if(x!=1) y*=x-1; return y;}ll solve(int now,ll mo){ if(now==r||mo==1) return MO(a[now],mo); else return ksm(a[now],solve(now+1,mod[now-l+1]),mo);}int main(){ scanf("%lld%lld",&n,mod); while(mod[tot]!=1) mod[tot+1]=phi(mod[tot]),tot++; for(int i=1;i<=n;i++) scanf("%lld",a+i); scanf("%lld",&q); while(q--){ scanf("%lld%lld",&l,&r); ll ans=solve(l,mod[0]); if(ans>=mod[0]) ans-=mod[0]; printf("%lld\n",ans); } return 0;}

 

转载于:https://www.cnblogs.com/JYYHH/p/8384375.html

你可能感兴趣的文章
SOAP web service用AFNetWorking实现请求
查看>>
Java变量类型,实例变量 与局部变量 静态变量
查看>>
mysql操作命令梳理(4)-中文乱码问题
查看>>
Python环境搭建(安装、验证与卸载)
查看>>
一个.NET通用JSON解析/构建类的实现(c#)
查看>>
Windows Phone开发(5):室内装修 转:http://blog.csdn.net/tcjiaan/article/details/7269014
查看>>
详谈js面向对象 javascript oop,持续更新
查看>>
关于这次软件以及pda终端的培训
查看>>
jQuery上传插件Uploadify 3.2在.NET下的详细例子
查看>>
如何辨别一个程序员的水平高低?是靠发量吗?
查看>>
新手村之循环!循环!循环!
查看>>
正则表达式的用法
查看>>
线程安全问题
查看>>
SSM集成activiti6.0错误集锦(一)
查看>>
下拉刷新
查看>>
linux的子进程调用exec( )系列函数
查看>>
MSChart的研究
查看>>
C# 索引器
查看>>
MySQLdb & pymsql
查看>>
zju 2744 回文字符 hdu 1544
查看>>